Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 963
Filtrar
1.
J Hazard Mater ; 470: 134147, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38565017

RESUMEN

Microplastics and antibiotics are prevalent and emerging pollutants in aquatic ecosystems, but their interactions in aquatic food chains remain largely unexplored. This study investigated the impact of polypropylene microplastics (PP-MPs) on oxytetracycline (OTC) trophic transfer from the shrimp (Neocaridina denticulate) to crucian carp (Carassius auratus) by metagenomic sequencing. The carrier effects of PP-MPs promoted OTC bioaccumulation and trophic transfer, which exacerbated enterocyte vacuolation and hepatocyte eosinophilic necrosis. PP-MPs enhanced the inhibitory effect of OTC on intestinal lysozyme activities and complement C3 levels in shrimp and fish, and hepatic immunoglobulin M levels in fish (p < 0.05). Co-exposure of MPs and OTC markedly increased the abundance of Actinobacteria in shrimp and Firmicutes in fish, which caused disturbances in carbohydrate, amino acid, and energy metabolism. Moreover, OTC exacerbated the enrichment of antibiotic resistance genes (ARGs) in aquatic animals, and PP-MPs significantly increased the diversity and abundance of ARGs and facilitated the trophic transfer of teta and tetm. Our findings disclosed the impacts of PP-MPs on the mechanism of antibiotic toxicity in aquatic food chains and emphasized the importance of gut microbiota for ARGs trophic transfer, which contributed to a deeper understanding of potential risks posed by complex pollutants on aquatic ecosystems.


Asunto(s)
Antibacterianos , Cadena Alimentaria , Microbioma Gastrointestinal , Microplásticos , Oxitetraciclina , Contaminantes Químicos del Agua , Animales , Oxitetraciclina/toxicidad , Microplásticos/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Antibacterianos/toxicidad , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Polipropilenos , Carpa Dorada/genética , Carpa Dorada/metabolismo , Penaeidae/microbiología , Penaeidae/efectos de los fármacos , Muramidasa/metabolismo
2.
Int J Biol Macromol ; 264(Pt 2): 130470, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453124

RESUMEN

LKB1 (liver kinase B1) is a key upstream kinase of AMPK and plays an important role in various cellular activities. While the function and mechanism of LKB1 have been widely reported in the study of tumor, there are few reports on its role in bacterial infectious diseases, especially in shrimp. In the present study, molecular characterization revealed that LvLKB1 has an open reading frame (ORF) of 1266 bp encoding 421 amino acids with a molecular weight of about 48 KDa, including the kinase region, N-terminal regulatory domain and C-terminal regulatory domain. LvLKB1 in hepatopancreas and hemocytes was significantly upregulated after infection with Vibrio alginolyticus (V. alginolyticus). After silencing LvLKB1 gene in Litopenaeus vannamei (L. vannamei) and artificially infecting V. alginolyticus, the survival rate of L. vannamei was significantly decreased. Subsequently, it was found that the expression of inflammatory factors in hepatopancreas and hemocytes of shrimp was up-regulated, and the expression of lipid oxidation factors was decreased after silencing LKB1, leading to the phenomenon of lipid accumulation in hepatopancreas. In order to explore the mechanism, autophagy levels of shrimp were detected after silencing LKB1, which showed that autophagy levels in hepatopancreas and hemocytes were significantly reduced. Further studies conclusively showed that silencing LvLKB1 inhibited AMPK phosphorylation induced by V. alginolyticus infection, thereby activating TOR pathway and inhibiting autophagy in shrimp. These results indicate that LvLKB1 regulates autophagy through AMPK/TOR signaling pathway to alleviate the damage caused by V. alginolyticus infection.


Asunto(s)
Penaeidae , Vibriosis , Animales , Vibrio alginolyticus/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Transducción de Señal , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Autofagia , Lípidos , Penaeidae/microbiología , Inmunidad Innata/genética , Hemocitos/metabolismo , Proteínas de Artrópodos/química
3.
Sci Total Environ ; 925: 171536, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38461992

RESUMEN

Environmental stress can disrupt the intricate interactions between the host and intestine microbiota, thereby impacting the host health. In this study, we aimed to elucidate the dynamic changes in the bacterial community within shrimp intestines under nitrite nitrogen (nitrite-N) stress and investigate potential host-related factors influencing these changes. Our results revealed a significant reduction in community diversity within the intestine exposed to nitrite-N compared to control conditions. Furthermore, distinct differences in community structures were observed between these two groups at 72 h and 120 h post-stress induction. Nitrite-N stress also altered the abundances of some bacterial species in the intestine dramatically. It is noteworthy that, in comparison to the 72 h, intestine bacterial community structure of stressed shrimp exhibited a significantly higher degree of dispersion after 120 h of nitrite-N stress when compared to control shrimp, and the relative abundance of numerous bacterial species experienced a substantial decrease or even reached 0 %. Moreover, it led to a reduction in bacterial community interactions and decreased competitiveness within the intestine microbiota. Notably, the influence of bacterial community assemblies in the shrimp intestine shifted from a stochastic process to a deterministic one after 24 h and 72 h of nitrite-N stress, returning to a stochastic process at 120 h. We further observed a close association between this phenomenon and host's response to nitrite-N stress. Expression levels of differentially expressed genes in the intestinal tissue significantly impact the intestine bacterial diversity and abundance of species. In particular, the significant decline in bacterial diversity and abundances of quite a few species in intestine was attributed to the up-regulation of peritrophin-48-like. Overall, nitrite-N stress indeed disrupted the intestine microbiota and changed the host-microbiota interactions of shrimp. This study offered novel insights into environment-host-microbiota interactions and also provided practical guidance for promoting healthy shrimp cultivation practices.


Asunto(s)
Microbioma Gastrointestinal , Penaeidae , Animales , Nitritos/toxicidad , Microbioma Gastrointestinal/fisiología , Bacterias/genética , Intestinos/microbiología , Crustáceos , Penaeidae/microbiología
4.
Microb Ecol ; 87(1): 51, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488929

RESUMEN

In aquatic environments, Vibrio and cyanobacteria establish varying relationships influenced by environmental factors. To investigate their association, this study spanned 5 months at a local shrimp farm, covering the shrimp larvae stocking cycle until harvesting. A total of 32 samples were collected from pond A (n = 6), pond B (n = 6), effluent (n = 10), and influent (n = 10). Vibrio species and cyanobacteria density were observed, and canonical correspondence analysis (CCA) assessed their correlation. CCA revealed a minor correlation (p = 0.847, 0.255, 0.288, and 0.304) between Vibrio and cyanobacteria in pond A, pond B, effluent, and influent water, respectively. Notably, Vibrio showed a stronger correlation with pH (6.14-7.64), while cyanobacteria correlated with pH, salinity (17.4-24 ppt), and temperature (30.8-31.5 °C), with salinity as the most influential factor. This suggests that factors beyond cyanobacteria influence Vibrio survival. Future research could explore species-specific relationships, regional dynamics, and multidimensional landscapes to better understand Vibrio-cyanobacteria connections. Managing water parameters may prove more efficient in controlling vibriosis in shrimp farms than targeting cyanobacterial populations.


Asunto(s)
Cianobacterias , Penaeidae , Vibrio parahaemolyticus , Vibrio , Animales , Estanques , Agua , Acuicultura , Penaeidae/microbiología
5.
J Hazard Mater ; 469: 133930, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38452673

RESUMEN

Dinotefuran, a neonicotinoid insecticide, may impact nontarget organisms such as Decapoda P. vannamei shrimp with nervous systems similar to insects. Exposing shrimp to low dinotefuran concentrations (6, 60, and 600 µg/L) for 21 days affected growth, hepatosomatic index, and survival. Biomarkers erythromycin-N-demethylase, alanine aminotransferase, and catalase increased in all exposed groups, while glutathione S-transferase is the opposite; aminopyrin-N-demethylase, malondialdehyde, and aspartate aminotransferase increased at 60 and 600 µg/L. Concentration-dependent effects on gut microbiota altered the abundance of bacterial groups, increased potentially pathogenic and oxidative stress-resistant phenotypes, and decreased biofilm formation. Gram-positive/negative microbiota changed significantly. Metabolite differences between the exposed and control groups were identified using mass spectrometry and KEGG pathway enrichment. N-acetylcystathionine showed potential as a reliable dinotefuran metabolic marker. Weighted correlation network analysis (WGCNA) results indicated high connectivity of cruecdysone in the metabolite network and significant enrichment at 600 µg/L dinotefuran. The WGCNA results revealed a highly significant negative correlation between two key metabolites, caldine and indican, and the gut microbiota within co-expression modules. Overall, the risk of dinotefuran exposure to non-target organisms in aquatic environments still requires further attention.


Asunto(s)
Microbioma Gastrointestinal , Guanidinas , Nitrocompuestos , Penaeidae , Animales , Penaeidae/genética , Penaeidae/metabolismo , Penaeidae/microbiología , Neonicotinoides/toxicidad , Neonicotinoides/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Oxidorreductasas N-Desmetilantes/farmacología
6.
Res Vet Sci ; 171: 105204, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471347

RESUMEN

The bioactivities of two commercially available probiotics and one chemical disinfectant were tested against strains of Vibrio parahaemolyticus (VPAHPND) and V. harveyi. This study aimed to determine shrimp pathogenic Vibrios' in vitro and in vivo sensitivities to commercial probiotics and a chemical disinfectant. The probiotics and disinfectant were tested first in vitro, followed by the in vivo trials. Results showed that upon administration of probiotics either through diet or adding into the tank water, the survivability of shrimp was increased during challenge with VPAHPND and V. harveyi. Also, the disinfectant was tested against the same pathogens and showed positive bactericidal effects at 2500 ppm and 5000 ppm. The present findings suggest that adding probiotics to the rearing water or the shrimp feeds effectively prevents infection by lowering the load of pathogenic bacteria. In comparison, the effectiveness of the disinfectant (PUR) depends on its appropriate concentration and timing of application. It is not only limited to rearing water but is also applicable for decontaminating pond liners, tanks, and other paraphernalia.


Asunto(s)
Penaeidae , Probióticos , Vibriosis , Vibrio parahaemolyticus , Animales , Vibriosis/prevención & control , Vibriosis/veterinaria , Penaeidae/microbiología , Probióticos/farmacología , Necrosis/veterinaria , Agua
7.
Sci Rep ; 14(1): 5668, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454039

RESUMEN

Vibrio parahaemolyticus is a gram-negative facultative anaerobic bacterium implicated as the causative agent of several shrimp diseases. As part of the effort to provide biocontrol and cost-effective treatments, this research was designed to elucidate the effect of Morinda citrifolia fruit extract on the immunity of Penaeus vannamei postlarvae (PL) to V. parahaemolyticus. The methanol extract of M. citrifolia was vacuum evaporated, and the bioactive compounds were detected using gas chromatography‒mass spectrometry (GC‒MS). Thereafter, P. vannamei PL diets were supplemented with M. citrifolia at different concentrations (0, 10, 20, 30, 40, and 50 mg/g) and administered for 30 days before 24 h of exposure to the bacterium V. parahaemolyticus. A total of 45 bioactive compounds were detected in the methanol extract of M. citrifolia, with cyclononasiloxane and octadecamethyl being the most abundant. The survival of P. vannamei PLs fed the extract supplement was better than that of the control group (7.1-26.7% survival greater than that of the control group) following V. parahaemolyticus infection. Shrimp fed 50 mg/g M. citrifolia had the highest recorded survival. The activities of digestive and antioxidant enzymes as well as hepatopancreatic cells were significantly reduced, except for those of lipase and hepatopancreatic E-cells, which increased following challenge with V. parahaemolyticus. Histological assessment of the hepatopancreas cells revealed reduced cell degeneration following the administration of the plant extracts (expecially those fed 50 mg/g M. citrifolia) compared to that in the control group. Therefore, the enhanced immunity against V. parahaemolyticus infection in P. vannamei could be associated with the improved hepatopancreas health associated with M. citrifolia fruit extract supplementation.


Asunto(s)
Morinda , Penaeidae , Vibriosis , Vibrio parahaemolyticus , Animales , Penaeidae/microbiología , Composición de Base , Frutas , Metanol/farmacología , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Extractos Vegetales/farmacología , Inmunidad Innata
8.
Int J Biol Macromol ; 262(Pt 2): 129984, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342260

RESUMEN

The ATP-binding cassette (ABC) transporters have crucial roles in various biological processes such as growth, development and immune defense in eukaryotes. However, the roles of ABC transporters in the immune system of crustaceans remain elusive. In this study, 38 ABC genes were systematically identified and characterized in Penaeus vannamei. Bioinformation analysis revealed that PvABC genes were categorized into ABC A-H eight subfamilies with 17 full-transporters, 11 half transporters and 10 soluble proteins, and multiple immunity-related cis-elements were found in gene promoter regions. Expression analysis showed that most PvABC genes were widely and highly expressed in immune-related tissues and responded to the stimulation of Vibrio parahaemolyticus. To investigate whether PvABC genes mediated innate immunity, PvABCC5, PvABCF1 and PvABCB4 were selected for dsRNA interference experiment. Knockdown of PvABCF1 and PvABCC5 not PvABCB4 increased the cumulative mortality of P. vannamei and bacterial loads in hepatopancreas after infection with V. parahaemolyticus. Further analysis showed that the PvABCF1 and PvABCC5 knockdown decreased expression levels of NF-κB pathway genes and antimicrobial peptides (AMPs). Collectively, these findings indicated that PvABCF1 and PvABCC5 might restrict V. parahaemolyticus challenge by positively regulating NF-κB pathway and then promoting the expression of AMPs, which would contribute to overall understand the function of ABC genes in innate immunity of invertebrates.


Asunto(s)
Penaeidae , Vibrio parahaemolyticus , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Vibrio parahaemolyticus/genética , Penaeidae/genética , Penaeidae/microbiología , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Artrópodos/genética , Transducción de Señal , Inmunidad Innata/genética , Adenosina Trifosfato/metabolismo
9.
Sci Total Environ ; 919: 170924, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38360329

RESUMEN

Nanoplastics (NPs) are widely distributed environmental pollutants that can disrupt intestinal immunity of crustaceans. In this study, the effects of NPs on gut immune enzyme activities, cell morphology, apoptosis, and microbiota diversity of Litopenaeus vannamei were investigated. L. vannamei was exposed to five concentrations of NPs (0, 0.1, 1, 5, and 10 mg/L) for 28 days. The results showed that higher concentrations of NPs damaged the intestinal villi, promoted formation of autophagosomes, increased intestinal non-specific immunoenzyme activities, and significantly increased apoptosis at 10 mg/L. In response to exposure to NPs, the expression levels of ATG3, ATG4, ATG12, Caspase-3, p53, and TNF initially increased and then decreased. In addition, the concentration of NPs was negatively correlated to the expression levels of the genes of interest and intestinal enzyme activities, suggesting that exposure to NPs inhibited apoptosis and immune function. The five dominant phyla of the gut microbiota (Proteobacteria, Firmicutes, Bacteroidetes, Acidobacteria, and Actinomycetes) were similar among groups exposed to different concentrations of NPs, but the abundances tended to differ. Notably, exposure to NPs increased the abundance of pathogenic bacteria. These results confirm that exposure to NPs negatively impacted intestinal immune function of L. vannamei. These findings provide useful references for efficient breeding of L. vannamei.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Penaeidae , Animales , Microplásticos , Poliestirenos , Disbiosis , Penaeidae/microbiología , Autofagia , Apoptosis
10.
BMC Genomics ; 25(1): 178, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355437

RESUMEN

BACKGROUND: Acute Hepatopancreatic Necrosis Disease (AHPND) causes significant mortality in shrimp aquaculture. The infection is primarily instigated by Vibrio parahaemolyticus (Vp) strains carrying a plasmid encoding the binary toxin PirAB. Yet, comprehension of supplementary virulence factors associated with this relatively recent disease remains limited. Furthermore, the same holds for gastroenteritis in humans caused by other Vp genotypes. Additionally, given the prevalent use of antibiotics to combat bacterial infections, it becomes imperative to illuminate the presence of antimicrobial resistance genes within these bacteria. RESULTS: A subsampled number of 1,036 Vp genomes was screened for the presence of antimicrobial resistance genes, revealing an average prevalence of 5 ± 2 (SD) genes. Additional phenotypic antimicrobial susceptibility testing of three Vp strains (M0904, TW01, and PV1) sequenced in this study demonstrated resistance to ampicillin by all tested strains. Additionally, Vp M0904 showed multidrug resistance (against ampicillin, tetracycline, and trimethoprim-sulfamethoxazole). With a focus on AHPND, a screening of all Vibrio spp. for the presence of pirA and/or pirB indicates an estimated prevalence of 0.6%, including four V. campbellii, four V. owensii, and a Vibrio sp. next to Vp. Their pirAB-encoding plasmids exhibited a highly conserved backbone, with variations primarily in the region of the Tn3 family transposase. Furthermore, an assessment of the subsampled Vp genomes for the presence of known virulence factors showed a correlation between the presence of the Type 3 Secretion System 2 and tdh, while the presence of the Type 6 Secretion System 1 was clade dependent. Furthermore, a genome-wide association study (GWAS) unveiled (new) genes associated with pirA, pirB, tdh, and trh genotypes. Notable associations with the pirAB genotype included outer membrane proteins, immunoglobulin-like domain containing proteins, and toxin-antitoxin systems. For the tdh + /trh + genotypes (containing tdh, trh, or both genes), associations were found with T3SS2 genes, urease-related genes and nickel-transport system genes, and genes involved in a 'minimal' type I-F CRISPR mechanism. CONCLUSIONS: This study highlights the prevalence of antimicrobial resistance and virulence genes in Vp, identifying novel genetic markers associated with AHPND and tdh + /trh + genotypes. These findings contribute valuable insights into the genomic basis of these genotypes, with implications for shrimp aquaculture and food safety.


Asunto(s)
Penaeidae , Vibrio parahaemolyticus , Humanos , Animales , Vibrio parahaemolyticus/genética , Antibacterianos/farmacología , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Prevalencia , Farmacorresistencia Bacteriana/genética , Genómica , Genotipo , Factores de Virulencia/genética , Ampicilina , Necrosis , Penaeidae/genética , Penaeidae/microbiología
11.
Mar Biotechnol (NY) ; 26(1): 92-102, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38165637

RESUMEN

The gut microbiota of aquaculture species contributes to their food metabolism and regulates their health, which has been shown to vary during aquaculture progression of their hosts. However, limited research has examined the outcomes and mechanisms of these changes in the gut microbiota of hosts. Here, Kuruma shrimps from the beginning, middle, and late stages of aquaculture progression (about a time duration of 2 months between each stage) were collected and variations in the gut microbiota of Kuruma shrimp during the whole aquaculture process were examined. High-throughput sequencing demonstrated increases in the diversity and richness of the shrimp gut microbiota with aquaculture progression. In addition, the gut microbiota composition differed among cultural stages, with enrichment of Firmicutes, RF39, and Megamonas and a reduction in Proteobacteria in the mid-stage. Notably, only very few taxa were persistent in the shrimp gut microbiota during the whole aquaculture progression, while the number of taxa that specific to the end of aquaculture was high. Network analysis revealed increasing complexity of the shrimp gut microbiota during aquaculture progression. Moreover, the shrimp gut microbiota became significantly more stable towards the end of aquaculture. According to the results of neutral community model, contribution of stochastic processes for shaping the shrimp gut microbiota was elevated along the aquaculture progression. This study showed substantial variations in shrimp gut microbiota during aquaculture progression and explored the underlying mechanisms regulating these changes.


Asunto(s)
Microbioma Gastrointestinal , Penaeidae , Animales , Microbioma Gastrointestinal/fisiología , Acuicultura/métodos , Penaeidae/microbiología , Alimentos Marinos
12.
J Basic Microbiol ; 64(2): e2300225, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37906111

RESUMEN

Indiscriminate use of antibiotics has led to the emergence of antibiotic-resistant microbes and the loss of natural flora in aquaculture systems necessitating the ban of many of these chemotherapeutants in aquaculture. Actinobacteria play a profound role in the biogeochemical cycling in the marine environment and represent the principal source of secondary metabolites with antimicrobial property. In the present study, 98 marine-derived actinomycete isolates were screened for antimicrobial activity against the common aquatic pathogens. A potent actinomycete isolate S26, identified as Streptomyces variabilis based on 16 S ribosomal RNA (rRNA) gene sequencing was then checked for the production of antibiotic in five different fermentation media and the one which showed maximum production was chosen for further study. Optimization of the fermentation medium for secondary metabolite production was carried out by response surface methodology (RSM) using DESIGN EXPERT. The analysis of variance (ANOVA) of the quadratic regression model demonstrated that the model was highly significant for the response concerned that is, antimicrobial activity as evident from the Fisher's F- test with a very low probability value [(P model>F) = 0.0001]. Of the 10 different solutions suggested by the software, the most suitable composition was found to be starch, 1.38%; soy powder, 0.88%; ammonium sulfate, 0.16% and salinity, 27.76‰. S. variabilis S26 cultured in the optimized production medium was applied in the Penaeus monodon larval rearing system and the total Vibrio count and survival rate were estimated. S. variabilis S26 treatment showed a significant reduction in vibrios and conferred better protection to P. monodon in culture system compared with control.


Asunto(s)
Actinobacteria , Antiinfecciosos , Penaeidae , Streptomyces , Vibriosis , Vibrio , Animales , Actinobacteria/genética , Actinobacteria/metabolismo , Larva/microbiología , Vibriosis/prevención & control , Antibacterianos/metabolismo , Antiinfecciosos/metabolismo , Penaeidae/microbiología
13.
Front Cell Infect Microbiol ; 13: 1294801, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089817

RESUMEN

Introduction: The binary PirA/PirB toxin expressed by Vibrio parahaemolyticus (PirABVp) is a virulent complex that causes acute hepatopancreatic necrosis disease (AHPND) in shrimps, affecting the global shrimp farming industry. AHPND is currently diagnosed by detecting pirA and pirB genes by PCR; however, several V. parahaemolyticus strains do not produce the two toxins as proteins. Thus, an immunoassay using antibodies may be the most effective tool for detecting toxin molecules. In this study, we report a sandwich ELISA-based immunoassay for the detection of PirABVp. Methods: We utilized a single-chain variable fragment (scFv) antibody library to select scFvs against the PirA or PirB subunits. Phage display panning rounds were conducted to screen and identify scFv antibodies directed against each recombinant toxin subunit. Selected scFvs were converted into IgGs to develop a sandwich immunoassay to detect recombinant and bacterial PirABVp. Results: Antibodies produced as IgG forms showed sub-nanomolar to nanomolar affinities (KD), and a pair of anti-PirA antibody as a capture and anti-PirB antibody as a detector showed a limit of detection of 201.7 ng/mL for recombinant PirABVp. The developed immunoassay detected PirABVp in the protein lysates of AHPND-causing V. parahaemolyticus (VpAHPND) and showed a significant detectability in moribund or dead shrimp infected with a VpAHPND virulent strain compared to that in non-infected shrimp. Discussion: These results indicate that the developed immunoassay is a reliable method for diagnosing AHPND by detecting PirABVp at the protein level and could be further utilized to accurately determine the virulence of extant or newly identified VpAHPND in the global shrimp culture industry.


Asunto(s)
Penaeidae , Toxinas Biológicas , Vibrio parahaemolyticus , Animales , Vibrio parahaemolyticus/genética , Penaeidae/microbiología , Ensayo de Inmunoadsorción Enzimática , Enfermedad Aguda , Necrosis
14.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38139356

RESUMEN

Litopenaeus vannamei is one of the most economically significant aquatic species globally. However, the emergence of acute hepatopancreatic necrosis disease (AHPND) in recent years has resulted in substantial losses within the L. vannamei farming industry. Phage therapy holds promise as an effective strategy for preventing and controlling bacterial infections like AHPND, thereby promoting the healthy and sustainable growth of the shrimp aquaculture sector. In this study, a novel and unique Vibrio parahaemolyticus bacteriophage, named vB_VpaP_SJSY21, was successfully isolated from sewage samples. Using transmission electron microscopy, it was observed that phage SJSY21 has an elongated shell. Notably, phage SJSY21 exhibited high infection efficiency, with an optimal multiplicity of infection (MOI) of only 0.01 and a remarkably short latent period of 10 min, resulting in a lysis quantity of 508. Furthermore, phage SJSY21 demonstrated notable heat resistance and the capacity to withstand high temperatures during preservation, thus holding potential for application in phage therapy. Whole-genome sequencing and analysis confirmed that phage SJSY21 has a genome size of 110,776 bp, classifying it as a new member of the short-tailed bacteriophage family. Additionally, cultivation experiments indicated that phage SJSY21 has the potential to enhance the survival of L. vannamei in culture systems, thereby offering innovative prospects for the application of phage therapy in aquaculture.


Asunto(s)
Bacteriófagos , Penaeidae , Vibrio parahaemolyticus , Animales , Vibrio parahaemolyticus/genética , Acuicultura , Necrosis , Penaeidae/microbiología
15.
Microbiome ; 11(1): 230, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858205

RESUMEN

BACKGROUND: Shrimp cultured in a biofloc system (BFS) have a lower disease incidence than those farmed in a water exchange system (WES). Although a number of studies have reported that the gut bacterial community induced by BFS is highly associated with shrimp disease resistance, the causal relationship remains unknown. Here, the promotive roles of gut bacterial community induced by BFS in pathogenic Vibrio infection resistance and its potential micro-ecological and physiological mechanisms were investigated by gut bacterial consortium transplantation and synthetic community (SynCom) construction. RESULTS: The BFS induced a more stable and resistant gut bacterial community, and significantly enriched some beneficial bacterial taxa, such as Paracoccus, Ruegeria, Microbacterium, Demequina, and Tenacibaculum. Transplantation of a gut bacterial consortium from BFS shrimp (EnrichBFS) greatly enhanced the stability of the bacterial community and resistance against pathogenic V. parahaemolyticus infection in WES shrimp, while transplantation of a gut bacterial consortium from WES shrimp significantly disrupted the bacterial community and increased pathogen susceptibility in both WES and BFS shrimp. The addition of EnrichBFS in shrimp postlarvae also improved the pathogen resistance through increasing the relative abundances of beneficial bacterial taxa and stability of bacterial community. The corresponding strains of five beneficial bacterial taxa enriched in BFS shrimp were isolated to construct a SynComBFS. The addition of SynComBFS could not only suppress disease development, but also improve shrimp growth, boost the digestive and immune activities, and restore health in diseased shrimp. Furthermore, the strains of SynComBFS well colonized shrimp gut to maintain a high stability of bacterial community. CONCLUSIONS: Our study reveals an important role for native microbiota in protecting shrimp from bacterial pathogens and provides a micro-ecological regulation strategy towards the development of probiotics to ameliorate aquatic animal diseases. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Penaeidae , Vibriosis , Vibrio parahaemolyticus , Animales , Vibrio parahaemolyticus/fisiología , Penaeidae/microbiología , Bacterias , Vibriosis/prevención & control , Acuicultura
16.
Sci Rep ; 13(1): 17844, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857653

RESUMEN

The global aquaculture industry has suffered significant losses due to the outbreak of Acute Hepatopancreatic Necrosis Disease (AHPND) caused by Vibrio parahaemolyticus. Since the use of antibiotics as control agents has not been shown to be effective, an alternative anti-infective regimen, such as phage therapy, has been proposed. Here, we employed high-throughput screening for potential phages from 98 seawater samples and obtained 14 phages exhibiting diverse host specificity patterns against pathogenic VPAHPND strains. Among others, two Chimallinviridae phages, designated Eric and Ariel, exhibited the widest host spectrum against vibrios. In vitro and in vivo studies revealed that a cocktail derived from these two nucleus-forming vibriophages prolonged the bacterial regrowth of various pathogenic VPAHPND strains and reduced shrimp mortality from VPAHPND infection. This research highlights the use of high-throughput phage screening that leads to the formulation of a nucleus-forming phage cocktail applicable for bacterial infection treatment in aquaculture.


Asunto(s)
Antiinfecciosos , Bacteriófagos , Penaeidae , Vibrio parahaemolyticus , Animales , Penaeidae/microbiología , Alimentos Marinos , Antibacterianos
17.
Food Res Int ; 173(Pt 2): 113462, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803786

RESUMEN

There is little known about the growth and survival of naturally-occurring Vibrio parahaemolyticus in harvested raw shrimps. In this study, the fate of naturally-occurring V. parahaemolyticus in post-harvest raw shrimps was investigated from 4℃ to 30℃ using real-time PCR combined with propidium monoazide (PMA-qPCR). The Baranyi-model was used to fit the growth and survival data. A square root model and non-linear Arrhenius model was then used to quantify the parameters derived from the Baranyi-model. The results showed that naturally-occurring V. parahaemolyticus were slowly inactivated at 4℃ and 7℃ with deactivation rates of 0.019 Log CFU/g/h and 0.025 Log CFU/g/h. Conversely, at 15, 20, 25, and 30 °C, the average maximum growth rates (µmax) of naturally-occurring V. parahaemolyticus were determined to be 0.044, 0.105, 0.179 and 0.336 Log CFU/g/h, accompanied by the average lag phases (λ) of 15.5 h, 7.3 h, 4.4 h and 3.7 h. The validation metrics, Af and Bf, for both the square root model and non-linear, indicating that the model had a good ability to predict the growth behavior of naturally-occurring V. parahaemolyticus in post-harvest raw shrimps. Furthermore, a comparative exploration between the growth of artificially contaminated V. parahaemolyticus in cooked shrimps and naturally-occurring V. parahaemolyticus in post-harvest raw shrimps revealed intriguing insights. While no substantial distinction in deactivation rates emerged at 4 °C and 7 °C (P > 0.05), a discernible disparity in growth rates was observable at 15 °C, 20 °C, 25 °C, and 30 °C, with the former surpassing the latter. Which indicated the risk of V. parahaemolyticus using models derived from cooked shrimps may be biased. Our study also unveiled a discernible seasonal effect. The µmax and λ of V. parahaemolyticus in shrimps harvested in summer were similar to those harvested in autumn, while the initial and maximum bacterial concentration harvested in summer were higher than those harvested in autumn. This predictive microbiology model of naturally-occurring V. parahaemolyticus in raw shrimps provides relevance to modelling growth in situ.


Asunto(s)
Decápodos , Penaeidae , Vibrio parahaemolyticus , Animales , Recuento de Colonia Microbiana , Microbiología de Alimentos , Alimentos Marinos/microbiología , Penaeidae/microbiología
18.
J Invertebr Pathol ; 201: 108002, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37838066

RESUMEN

A new emerging disease called "translucent post-larvae disease" (TPD) in Penaeus vannamei, caused by a novel type of highly lethal Vibro parahaemolyticus (VpTPD), has become an urgent threat to the shrimp farming industry in China. In order to develop an effective disinfectant for the prevention and control of the VpTPD, the clinical protective effects of polyhexamethylene biguanide hydrochloride (PHMB) against VpTPD in Penaeus vannamei were investigated by carrying out an acute toxicity test of PHMB on post-larvae of P. vannamei and its effect of treatment test on VpTPD infection. The results showed that the median lethal concentration of disinfectant (LC50) values of PHMB to post-larvae of P. vannamei after treatment for 24 h, 48 h, 72 h, 96 h were 16.13 mg/L (14.18-18.57), 10.77 mg/L (9.93-11.72), 9.68 mg/L (8.53-11.64), 9.14 mg/L (7.70-10.99), respectively. In addition, a clinical trial showed that 1 mg/L PHMB showed a strong protective effect on the post-larvae of shrimp challenged with 101-104 CFU/ml of VpTPD. The relative percentage survival (RPS) of 1 mg/L PHMB on post-larvae of P. vannamei challenged with VpTPD at 101, 102, 103 and 104 CFU/ml were 63.65 %±6.81, 62.96 %±5.56, 60.00 %±3.75 and 66.67 %±3.75 at 96 hours post infection. The results highlight the clinical protective effects of the PHMB and therefor PHMB can be used as a preventive measure to control early TPD infection in shrimp culture. This study also provides valuable information for the prevention of other bacterial diseases in shrimp culture.


Asunto(s)
Desinfectantes , Penaeidae , Vibrio parahaemolyticus , Animales , Penaeidae/microbiología , Larva , Desinfectantes/farmacología
19.
Appl Microbiol Biotechnol ; 107(24): 7489-7500, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37768346

RESUMEN

Ample evidence shows dysbiosis in the gut microbiota when comparing healthy shrimp with those affected by severe acute hepatopancreatic necrosis disease (AHPND). However, the static comparison used in available studies leads to the uncertainties regarding how and to what extent the gut microbiota responds to the progressive severity of AHPND. In addition, shrimp AHPND is featured by rapid and massive mortality, thus the initiation of AHPND must be diagnosed for preemptive therapy. For these reasons, we explored the ecological assembly of gut microbiota over shrimp AHPND progression. Increasing AHPND severity was associated with linear increase in the copies of pirAB genes, relative abundance of gut Vibrio and potentially pathogenic, and reduction in the gut bacterial diversity, stability, and relative abundance of Bdellovibrio. Negative and significant association between gut Vibrio and Bdellovibrio were noted, indicating that compromised predation exerts a role in AHPND progression. Notably, the extents of departure to the healthy shrimp gut microbiota were positively coupled with the increasing severity of AHPND. After controlling the temporal variation in the gut microbiota as healthy shrimp age, we constructed a diagnosis model that accurately diagnosed the initial, progressed or moribund stages of AHPND, with an overall accuracy of 86.5%. Shrimp AHPND induced more stochastic gut microbiotas as a consequence of the attenuated ability of diseased shrimp to select their commensals, resulting in convergent bacterial communities between gut and rearing water over AHPND progression. Collectively, our findings provide important step toward the ecological assembly of gut microbiota implicating in AHPND etiology and in diagnosing AHPND stages. KEY POINTS: • The departure of shrimp gut microbiota positively linked with AHPND severity. • The diagnosis model accurately diagnosed the stages of AHPND. • Shrimp AHPND induced more stochastic gut microbiota.


Asunto(s)
Bdellovibrio , Microbioma Gastrointestinal , Penaeidae , Vibrio parahaemolyticus , Vibrio , Animales , Humanos , Hepatopáncreas/microbiología , Hepatopáncreas/patología , Progresión de la Enfermedad , Enfermedad Aguda , Crustáceos/microbiología , Necrosis/patología , Penaeidae/microbiología , Vibrio parahaemolyticus/genética
20.
Lett Appl Microbiol ; 76(8)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37541955

RESUMEN

Globally, Penaeus vannamei is the vital species in aquaculture production. Beneficial bacterial exploration of gut, sediment, and water were investigated in P. vannamei culture using Illumina Miseq sequencing of 16S RNA V3-V4 hypervariable regions. Predominant phyla identified were Proteobacteria, Tenericutes, Bacteroidetes in gut; Proteobacteria, Bacteroidetes, Planctomycetes in sediment and Cyanobacteria, Proteobacteria, and Planctomycetes in water. In total, 46 phyla, 509 families and 902 genera; 70 phyla, 735 families and 1255 genera; 55 phyla, 580 families and 996 genera were observed in gut, sediment and water, respectively. Diversity of microbial communities in respect of observed Operational Taxonomic Units, diversity indices (Shannon and Simpson), richness index (Chao1) were significantly high P (<0.05) in 60 DoC in gut and 30 DoC in sediment. Beta diversity indicated separate clusters for bacterial communities in gut, sediment and water samples and formation of distinct community profiles. Core microbiome in P. vannamei rearing ponds over a time consisted of 9, 21, and 20 OTUs in gut, rearing water and sediment, respectively. This study helps to intervene with suitable beneficial microbes to establish an aquaculture system thereby contributes to enhance the productivity, improve water quality and pond bottom condition, and control the pathogenic agents at each stage of the culture.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Penaeidae , Humanos , Animales , Penaeidae/microbiología , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Bacterias/genética , Microbiota/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...